Multiobjective RBFNNs Designer for Function Approximation: An Application for Mineral Reduction

نویسندگان

  • Alberto Guillén
  • Ignacio Rojas
  • Jesús González
  • Héctor Pomares
  • Luis Javier Herrera
  • Francisco Fernández
چکیده

Radial Basis Function Neural Networks (RBFNNs) are well known because, among other applications, they present a good performance when approximating functions. The function approximation problem arises in the construction of a control system to optimize the process of the mineral reduction. In order to regulate the temperature of the ovens and other parameters, it is necessary a module to predict the final concentration of mineral that will be obtained from the source materials. This module can be formed by an RBFNN that predicts the output and by the algorithm that designs the RBFNN dynamically as more data is obtained. The design of RBFNNs is a very complex task where many parameters have to be determined, therefore, a genetic algorithm that determines all of them has been developed. This algorithm provides satisfactory results since the networks it generates are able to predict quite precisely the final concentration of mineral.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation

This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two we...

متن کامل

Improving Performance of Multi-objective Genetic for Function Approximation through island specialisation

Nature shows many examples where the specialisation of elements aimed to solve different problems is successful. There are explorer ants, worker bees, etc., where a group of individuals is assigned a specific task. This paper will extrapolate this philosophy, applying it to a multiobjective genetic algorithm. The problem to be solved is the design of Radial Basis Function Neural Networks (RBFNN...

متن کامل

Improving the Performance of Multi-objective Genetic Algorithm for Function Approximation Through Parallel Islands Specialisation

Nature shows many examples where the specialisation of elements aimed to solve different problems is successful. There are explorer ants, worker bees, etc., where a group of individuals is assigned a specific task. This paper will extrapolate this philosophy, applying it to a multiobjective genetic algorithm. The problem to be solved is the design of Radial Basis Function Neural Networks (RBFNN...

متن کامل

Monitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach

The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006